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Test for nonlinear dynamical behavior in symbol sequences
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We discuss the analysis of highly discretized data, given as a time sequence of measurements, and propose
a test for nonlinear dynamical behavior. Statistical significance is achieved by means of surrogate data, for
which the construction rules are given. The method of surrogate data as often applied to the analysis of time
series, however, cannot be used in the present case of the analysis of symbol sequences. Therefore, a consid-
erably different technique is developed. The test is applied to several model examples.
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In time series analysis, an important question is whether af. [4,5]). Real-world data are always disturbed by noise, and
given time series results from a linear stochastic proces this case the concept of a generating partition is usually
(colored noisgor a process with a nonlinear dynamical be- not clearly defined6]; furthermore, in the following we as-
havior. This could be dynamics on a strange attractor or angume that only a finite sequence is given.
other irregular dynamics that can be described by nonlinear Given a symbol sequence or a time series that has been
differential equations or nonlinear maps. The answer to thigroduced by a process whose properties are not known, there
question has immediate consequences for modeling and tifXist several questions one might wish to answer. To do this,
physical interpretation of the daf4]. Sometimes the data of one can test the data with respect to a corresponding null
an experiment are highly discretized or even given by symhypothesis. However, it is easy to demonstrate that the null
bols rather than numbers, e.g., in biology, physiology, mehypotheses differ for symbol sequences and time series. The
teorology, and climatology. This implies a huge information simplest question is whether there is evidence for any struc-
loss, since a symbol cannot carry the same amount of infoiture at all. In the case of time series analysis, the correspond-
mation as a real number, and, more important, between syniag null hypothesis is as follows: The time series can be fully
bols no order relation exists. Experimental data are alwaygescribed by identically and independently distribut#D )
limited in length and resolution. Additionally, the data are noise. In the case of symbol sequences this means that the
often corrupted by noise. To yield reliable results in spite ofsymbol sequence can be fully described by a realization of a
these limitations, one has to apply statistical tests that take aBernoulli process, i.e., a memoryless Markov process. Both
limitations into account. hypotheses can be tested using shuffled data as surrogates.

In this contribution we will elaborate on a method to dis- A more complicated question is whether or not the time
criminate between symbol sequences that can be describ&@ries can be modeled by a linear stochastic process. The
by colored noise and dynamical ones. A useful definition ofcorresponding null hypothests, is that the time series can
“symbolic noise,” however, is still lacking2]. The test is be generated by linearly autocorrelated Gaussian noise, also
performed by means of the method of surrogate dafa called colored noise. Surrogate data to test this hypothesis
which is widely applied for data given by a time series. ~ can be generated by an autoregreséiMe) model[7], which

At first, we derive a certain property of “noisy se- preserves the linear correlations. The amplitude-adjusted
quences” that can be used for discrimination. We find that-ourier transfor{AAFT) algorithm of Theileret al.[3] also
one cannot use here the same concept for constructing sugecounts for arbitrary monotone transformatiéhsuperim-
rogate data as in the usual time series case. So we propogesed on the time series.
another approach to construct surrogate data for symbol se- To test forH, in the case oBymbol sequenceas a first
quences, using a new discriminating statistic. The metho@ttempt one could apply the AAFT algorithm to the symbol
will be illustrated by examining several examples of nonlin-sequenceS. Therefore, one has to map to a set of real
ear deterministic and stochastic sequences. A brief discustumbers to yield a time series, s&y For example, ifS
sion concerning inherent limitations in the analysis of sym-consists ofa different symbols, the time seri&could con-
bol sequences, in contrast to time series analysis, is reporteist of the number§l, . . . @} only. However, application of
in the last part of the paper. the AAFT algorithm toY fails, because in this cag® is not

It is important to mention that the approach introduceda one-to-one relation and thus the amplitude adjustment can-
here is directed towards the analysis of real-world data. W&ot be performed in a unique way. It is important to note that
do not consider “symbolic dynamics” in the sense that tothis is not only a technical problem. The deeper reason for
each infinitely long symbol sequence a unique phase spadhbe failure of the method is that there does not exist an order
point is associated by a generating partit{for an overview  relation for symbol sequences; they always have to be related

to numbers in some nonunique way to calculate quantities of
time series analysis. An essential consequence is that for
*FAX: +49-331-977-1142. Electronic address: hv@agnld.uni-Symbol sequences containing different symbols there are
potsdam.de a(a—1)/2 possibilities to define an autocorrelation function
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(ACF) [8]. Therefore, in the case @f=3, which is studied TABLE I. The models to generate the time series, and the test
here, one has several equivalent ACF’s. So, a test for soméesults for different measurement partitions. The second column
thing analogous to colored noise cannot rely on preservingives the number of elements of the alphabet related to the partition.
one special correlation structure. Here we will exploit otherThe third column displays for which values ofthe quantityW ()
basic properties of colored noise that can be applied to Symdelds a s_ignificance of at _Ieast 98%. In case of “none,” the null
bol sequences. hypothesmHO cannot be rejgcted. The charactéasto (f) refer t_o
Preciselycolored noisehas to be understood as a realiza- FIgS. 1 and 2. For the continuous modals denotes the sampling
tion of a general linear procegX,! , which is defined as Merva
Xi=2,-09u€_u, Where{e} is a Gaussian IID process, and

{g,} is a given sequence of constants satisfylg ,g3< Model * Significance
[9]. We call a finite realizatioiX={x}{., of such a process Hénon map[11] with a=1.4,b=0.3 3 1,2,4,56
alinear time seriesA linear time series can be modeled by 4 all (&
the AR modelx,==P_,ajx,_;+e;, whose coefficients can 5 12346
be fitted to the data. 6 none

We SOW want to test_whether a given s;_/mbol sequencg map(12] 3 14
S={s};=; can be described by colored noise. This is the ..~ o _ _

: . . . with a=1.0,b=0.9, xk=0.4, »=6.0 4 1,2,4(b)

case if there exists a linear time serks&nd ameasurement 5 1245
partition & [6], which leads to the given symbol sequeike 5 ’2 ’4'
The measurement partitioh divides the state space into a ’
finite number of sets, each of which is labeled by a synabol Lorenz mode[13] 3 2,3,4,5,6
of an alphabetd={a,, ... ,a,}. Thus, the unknown time with +=10, 3=8/3, p=28, 4 2,3,4,5,60)
series is transformed into a symbol sequencebbyR— A, At=0.05 5 all
Xi—S;. Now the null hypothesi$l, reads:A measurement 6 all
partition ® and a suitable linear time series=x{x}{"; ex- :
ists, such that the given symbol sequenee{§!" , is gen- ~ Mackey-Glass equatiofi4] 3 3
erated byd(X). In this caseS can be thought of as “linear With time delayT=17, At=8 4 2,356
symbolic noise” and contains no significant nonlinear dy- S all
namical behavior. 6 2,3,5,6

Of course, one cannot uniquely retrieve the unknown timeAR(G) fit to the Henon map 3 none
seriesX that leads to the given symbol sequeigdut it is 4 none(e)
sufficient to show that the symbol sequence can be produced 5 none
by the measurement partition af least ondinear time se- 6
. . . . none
ries. To test foHy now we use the following criterion: The
autocovariance of a general linear process is symmetric witlAR(6) fit to the Lorenz model 3 none
respect to the time lag, i.e., con)(=cov(— 7). Given an 4 none(f)
arbitrary process$without loss of generality with zero megan 5 none
the  covariance can be written as  coy( 6 none

= [Z.pxy(7)xy dx dy, wherey is the process shifted by

time units andp,,(7) is the probability densityp,(7)

=p(x;=x andx, ,=Y). Hence, the covariances cay(de- statistical properties can be described completely by colored

pend only on the symmetric parpiy(q')z %{pxy(T) noise have symmetric transition probabilities, i.p;;(7)

+pyx(7)} of the probability densityp,(7): = pisj (7). It is important to mention that the inverse does not
hold, i.e., from symmetric transition probabilities it domst
follow in general that the underlying time series is linear,

cov( T):f Pxy(T)xy dx dy @ such that%ne can only reject, bui/nc?t confittrty,
To test forHy one has to test for the symmetry of the
pij(7). Symmetry can be quantified by the expression

@ A= D 2
win=3 [P0 P /pipj. @

ij=1

=f Pyx(— 7)Xy dx dy 2

1
:EJ {pxy(7)+pyx(7)}Xy dx dy ©)

The quantityW (7) is zero if and only ifp;;(7) is symmetric,
Since a linear process can be characterized completely by iend is restricted to the intervi0,«].
mean and covariances, the symmetry of the covariances Because the asymptotic distribution oF(7) is not
leads to vanishing asymmetric constituentspef(7). This  known, we estimate by a Monte Carlo method treguency
property is used here for the test. Because the partifion distribution of W (7) for an ensemble of surrogatésee be-
does not depend on time, the symmetry of the probabilityow). Since this frequency distribution often differs consid-
densitiesp,,(7) is preserved in the transition probabilities erably from Gaussianity, for computing significance levels
for the symbols,p;j(7): pij(7)=p(si=a and s, ,=a)) we use the “Monte Carlo probability,” similar as {10]. To
=p;i(7) foralli,j, 7. Therefore, all symbol sequences whosetest for a significance g percent, we calculat# () for an
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for the occurrence of the symbal right after thek letter

O AP, U A word W. This guarantees the same transition probabilities
pij(7) at least up tor=k for S and the surrogates. To gen-

A ol A A Al el e Ay, A A erate surrogates by the Markov modgl choose a word of
lengthk at random frons and continue by using thg,; and

3
3
RN N LN N NN SN P N LN LR S L Pjjw. respectively, for the following symbols.

Step 2 Symmetrize the Markov modd?. For k=1, the
(d) 3 AP AT ATAA A AT symmetrization ofP is performed by setting)f“=pisj/pi.

For largerk, use
e gyl g A gy
1

i g A e e T T

P5w= 2 (Pjjwt Pjjwb), (5)

whereWP represents the word/ in reverse order. The sym-
metrized Markov modelP* has transition probabilities
pij(7), which are symmetric at least up te=k. Note that the

FIG. 1. Symbol sequences produced by a four-symbol measurésymmetrization of the Markov model does not distort the
ment partition of the time series of Table (8) Henon map,(b)  frequency distribution of the symbols. To generate surro-
Ikeda map,(c) Lorenz equations(d) Mackey-Glass equatior(g) gates by the Markov modét®, first choose a word of length
linearized Haon time series(f) linearized Lorenz time series. The k at random from the sequence the reverse sequenend
first four sequences are nonlinear, the last two are linear ones.  continue by using th@jsh and piw, respectively.

We now demonstrate the potentials of the proposed
ensemble oM surrogates with fixed parameteand cut the  method. We perform the test for symbol sequences by con-
upper and lowep/2 percent of the resulting frequency dis- sidering six different systems. These are two nonlinear maps,
tributions. If W(7) lies outside this frequency distribution, two nonlinear differential equations, and two noisy linear
H, is rejected at a significance level pfpercent in the limit  maps, given in Table I. The noisy linear maps are produced
of an infiniteM. For finite but largeM the significance level by a global linearization of the H®n and the Lorenz time
varies by a small amount of the order oML/ which we do  series, via an AF6) model. We use rather short realizations
not care about here. of these systems, containing only 250 data points, and we

A main point of this procedure is the calculation of the encode the corresponding dynamics adopting different mea-
surrogates. Given a symbol sequerfsewe first generate surement partitions. For the special case of a four-symbol
surrogate data with the same transition probabilipgé7), = measurement partition the corresponding symbol sequences
which serve as a contrgbtep 1, then we calculate surro- are shown in Fig. 1. Her&b is chosen as an equipartition of
gates with the sampisj(r) (step 2: the state space, the alphabétgiven by{1,2,3,4. By using

Step 1 For the production of surrogates we use Markovthe Markov modeP, we first generate 100 surrogates to test
models fitted to the sequen& since these reproduce the up to which time lagr the models are appropriate. We find
transition probabilitieg;;(7) under fewest constraints. The for Markov models of fourth order that for all sequences and
fitting of a Markov modelP of orderk is performed in the all 76 the quantity¥(7) lies within the frequency distri-
following way: Fork=1, estimate the conditional probabil- bution of the surrogateé-ig. 2). TestingHg by using the
ity p;;; for the occurrence of the symbal right after the ~ symmetrized Markov modé?® reveals clearly the nonlinear
symbola; . For largerk, use the conditional probability;,  origin of the first four sequences. These results and also the
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results for three-, five-, and six-symbol partitions, are sumsequences does not allow one to use analogous methods.
marized in Table |. Additionally, for other than equiparti- Note also that sequences built from a two-letter alphabet nec-
tions, we find a similar high sensitivity of the test, even for essarily have symmetric transition probabilities and cannot
rather nonhomogeneous partitions of the phase space. be tested by this method. In this case one still could apply
Here we performed six different tests for six different methods based on word distributiofis7], which, however,
parameters, each with a single-test significance of 98%. It regard other hypothesis and usually need a larger amount of
is beyond the scope of this paper to investigate how the totalata than discussed here.
significance level, where all results are summed in one quan- To summarize, we have introduced a method for distin-
tity, has to be calculated. Since the results are not indepemyuishing “linear symbolic noise” from nonlinear dynamics
dent of each other, this would be a formidable task, but wen experimental symbolic data. We consider a symbol se-
think that often the single-test significances can give usefujuence as linear symbolic noise, if it could result from a
hints for some underlying structure. measurement partition of a linetime seriesTo test for this,
With this method we only test for linearity but not for we introduce a method of surrogate data suited for testing
stochasticity, i.e., a symbol sequence resulting from a partisymbol sequences. The method works well for different mea-
tion of a linear deterministictime series would not yield surement partitions, and the test shows a high sensitivity
significance in all cases. In contrast, if the AAFT method iseven for very short sequences. For possible applications we
applied directly to such a time series, it can yield signifi-think of the analysis of symbol sequences obtained from
cance. This has been already pointed oytl#l; the method  physiological experimentsl8], especially from experiments
of Theiler tests for the negation of “linearignd stochastic-  of neurophysiology19] and cognitive complexity20].
ity,” which is “nonlinearity or determinism.” If one wants
to exclude such misleading results in testing against linearity,
one also has to test for determinism. Usual tests for deter- We thank Dr. A. Witt for useful discussions. H.V. ac-
minism(e.g.,[16]) are based on smoothness properties of the&knowledges financial support from the Max-Planck-
trajectories in the embedding space. Dealing with symbofGesellschatft.
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