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Test for nonlinear dynamical behavior in symbol sequences
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~Received 13 December 1996; revised manuscript received 14 October 1997!

We discuss the analysis of highly discretized data, given as a time sequence of measurements, and propose
a test for nonlinear dynamical behavior. Statistical significance is achieved by means of surrogate data, for
which the construction rules are given. The method of surrogate data as often applied to the analysis of time
series, however, cannot be used in the present case of the analysis of symbol sequences. Therefore, a consid-
erably different technique is developed. The test is applied to several model examples.
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In time series analysis, an important question is wheth
given time series results from a linear stochastic proc
~colored noise! or a process with a nonlinear dynamical b
havior. This could be dynamics on a strange attractor or
other irregular dynamics that can be described by nonlin
differential equations or nonlinear maps. The answer to
question has immediate consequences for modeling and
physical interpretation of the data@1#. Sometimes the data o
an experiment are highly discretized or even given by sy
bols rather than numbers, e.g., in biology, physiology, m
teorology, and climatology. This implies a huge informati
loss, since a symbol cannot carry the same amount of in
mation as a real number, and, more important, between s
bols no order relation exists. Experimental data are alw
limited in length and resolution. Additionally, the data a
often corrupted by noise. To yield reliable results in spite
these limitations, one has to apply statistical tests that tak
limitations into account.

In this contribution we will elaborate on a method to d
criminate between symbol sequences that can be desc
by colored noise and dynamical ones. A useful definition
‘‘symbolic noise,’’ however, is still lacking@2#. The test is
performed by means of the method of surrogate data@3#,
which is widely applied for data given by a time series.

At first, we derive a certain property of ‘‘noisy se
quences’’ that can be used for discrimination. We find t
one cannot use here the same concept for constructing
rogate data as in the usual time series case. So we pro
another approach to construct surrogate data for symbo
quences, using a new discriminating statistic. The met
will be illustrated by examining several examples of nonl
ear deterministic and stochastic sequences. A brief dis
sion concerning inherent limitations in the analysis of sy
bol sequences, in contrast to time series analysis, is repo
in the last part of the paper.

It is important to mention that the approach introduc
here is directed towards the analysis of real-world data.
do not consider ‘‘symbolic dynamics’’ in the sense that
each infinitely long symbol sequence a unique phase sp
point is associated by a generating partition~for an overview
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cf. @4,5#!. Real-world data are always disturbed by noise, a
in this case the concept of a generating partition is usu
not clearly defined@6#; furthermore, in the following we as
sume that only a finite sequence is given.

Given a symbol sequence or a time series that has b
produced by a process whose properties are not known, t
exist several questions one might wish to answer. To do t
one can test the data with respect to a corresponding
hypothesis. However, it is easy to demonstrate that the
hypotheses differ for symbol sequences and time series.
simplest question is whether there is evidence for any st
ture at all. In the case of time series analysis, the correspo
ing null hypothesis is as follows: The time series can be fu
described by identically and independently distributed~IID !
noise. In the case of symbol sequences this means tha
symbol sequence can be fully described by a realization
Bernoulli process, i.e., a memoryless Markov process. B
hypotheses can be tested using shuffled data as surroga

A more complicated question is whether or not the tim
series can be modeled by a linear stochastic process.
corresponding null hypothesisH0 is that the time series ca
be generated by linearly autocorrelated Gaussian noise,
called colored noise. Surrogate data to test this hypoth
can be generated by an autoregressive~AR! model@7#, which
preserves the linear correlations. The amplitude-adjus
Fourier transform~AAFT! algorithm of Theileret al. @3# also
accounts for arbitrary monotone transformationsQ superim-
posed on the time series.

To test forH0 in the case ofsymbol sequences, as a first
attempt one could apply the AAFT algorithm to the symb
sequenceS. Therefore, one has to mapS to a set of real
numbers to yield a time series, sayY. For example, ifS
consists ofa different symbols, the time seriesY could con-
sist of the numbers$1, . . . ,a% only. However, application of
the AAFT algorithm toY fails, because in this caseQ is not
a one-to-one relation and thus the amplitude adjustment
not be performed in a unique way. It is important to note th
this is not only a technical problem. The deeper reason
the failure of the method is that there does not exist an or
relation for symbol sequences; they always have to be rel
to numbers in some nonunique way to calculate quantitie
time series analysis. An essential consequence is that
symbol sequences containinga different symbols there are
a(a21)/2 possibilities to define an autocorrelation functi

i-
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~ACF! @8#. Therefore, in the case ofa>3, which is studied
here, one has several equivalent ACF’s. So, a test for so
thing analogous to colored noise cannot rely on preserv
one special correlation structure. Here we will exploit oth
basic properties of colored noise that can be applied to s
bol sequences.

Precisely,colored noisehas to be understood as a realiz
tion of a general linear process$Xt% , which is defined as
Xt5(u50

` guet2u , where$et% is a Gaussian IID process, an
$gu% is a given sequence of constants satisfying(u50

` gu
2,`

@9#. We call a finite realizationX5$xt% t51
N of such a process

a linear time series. A linear time series can be modeled b
the AR modelxt5( i 51

p aixt2 i1et , whose coefficients can
be fitted to the data.

We now want to test whether a given symbol seque
S5$st% t51

N can be described by colored noise. This is t
case if there exists a linear time seriesX and ameasuremen
partition F @6#, which leads to the given symbol sequenceS.
The measurement partitionF divides the state space into
finite number of sets, each of which is labeled by a symboai
of an alphabetA5$a1 , . . . ,aa%. Thus, the unknown time
series is transformed into a symbol sequence byF: R→A,
xt°st . Now the null hypothesisH0 reads:A measuremen
partition F and a suitable linear time series X5$xt% t51

N ex-
ists, such that the given symbol sequence S5$st% t51

N is gen-
erated byF(X). In this caseS can be thought of as ‘‘linea
symbolic noise’’ and contains no significant nonlinear d
namical behavior.

Of course, one cannot uniquely retrieve the unknown ti
seriesX that leads to the given symbol sequenceS. But it is
sufficient to show that the symbol sequence can be produ
by the measurement partition ofat least onelinear time se-
ries. To test forH0 now we use the following criterion: The
autocovariance of a general linear process is symmetric
respect to the time lag, i.e., cov(t)5cov(2t). Given an
arbitrary process~without loss of generality with zero mean!
the covariance can be written as cov(t)
5*2`

` pxy(t)xy dx dy, wherey is the process shifted byt
time units andpxy(t) is the probability densitypxy(t)
5p(xt5x andxt1t5y). Hence, the covariances cov(t) de-
pend only on the symmetric partpxy

s (t)5 1
2 $pxy(t)

1pyx(t)% of the probability densitypxy(t):

cov~t!5E pxy~t!xy dx dy ~1!

5E pyx~2t!xy dx dy ~2!

5
1

2E $pxy~t!1pyx~t!%xy dx dy. ~3!

Since a linear process can be characterized completely b
mean and covariances, the symmetry of the covarian
leads to vanishing asymmetric constituents ofpxy(t). This
property is used here for the test. Because the partitionF
does not depend on time, the symmetry of the probab
densitiespxy(t) is preserved in the transition probabilitie
for the symbols,pi j (t): pi j (t)5p(st5ai and st1t5aj )
5pji (t) for all i , j ,t. Therefore, all symbol sequences who
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statistical properties can be described completely by colo
noise have symmetric transition probabilities, i.e.,pi j (t)
5pi j

s (t). It is important to mention that the inverse does n
hold, i.e., from symmetric transition probabilities it doesnot
follow in general that the underlying time series is linea
such that one can only reject, but not confirm,H0.

To test for H0 one has to test for the symmetry of th
pi j (t). Symmetry can be quantified by the expression

C~t!5 (
i , j 51

a S pi j ~t!2pji ~t!

2 D 2Y pipj . ~4!

The quantityC(t) is zero if and only ifpi j (t) is symmetric,
and is restricted to the interval@0,a#.

Because the asymptotic distribution ofC(t) is not
known, we estimate by a Monte Carlo method thefrequency
distribution ofC(t) for an ensemble of surrogates~see be-
low!. Since this frequency distribution often differs consi
erably from Gaussianity, for computing significance leve
we use the ‘‘Monte Carlo probability,’’ similar as in@10#. To
test for a significance ofp percent, we calculateC(t) for an

TABLE I. The models to generate the time series, and the
results for different measurement partitions. The second colu
gives the number of elements of the alphabet related to the parti
The third column displays for which values oft the quantityC(t)
yields a significance of at least 98%. In case of ‘‘none,’’ the n
hypothesisH0 cannot be rejected. The characters~a! to ~f! refer to
Figs. 1 and 2. For the continuous modelsDt denotes the sampling
interval.

Model a Significance

Hénon map@11# with a51.4, b50.3 3 1,2,4,5,6
4 all ~a!

5 1,2,3,4,6
6 none

Ikeda map@12# 3 1,4
with a51.0, b50.9, k50.4, h56.0 4 1,2,4~b!

5 1,2,4,5
6 2,4

Lorenz model@13# 3 2,3,4,5,6
with s510, b58/3, r528, 4 2,3,4,5,6~c!

Dt50.05 5 all
6 all

Mackey-Glass equation@14# 3 3
with time delayT517, Dt58 4 2,3,5,6~d!

5 all
6 2,3,5,6

AR~6! fit to the Hénon map 3 none
4 none~e!

5 none
6 none

AR~6! fit to the Lorenz model 3 none
4 none~f!
5 none
6 none
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ensemble ofM surrogates with fixed parametert and cut the
upper and lowerp/2 percent of the resulting frequency di
tributions. If C(t) lies outside this frequency distribution
H0 is rejected at a significance level ofp percent in the limit
of an infiniteM . For finite but largeM the significance leve
varies by a small amount of the order of 1/M , which we do
not care about here.

A main point of this procedure is the calculation of th
surrogates. Given a symbol sequenceS, we first generate
surrogate data with the same transition probabilitiespi j (t),
which serve as a control~step 1!, then we calculate surro
gates with the samepi j

s (t) ~step 2!:
Step 1: For the production of surrogates we use Mark

models fitted to the sequenceS, since these reproduce th
transition probabilitiespi j (t) under fewest constraints. Th
fitting of a Markov modelP of orderk is performed in the
following way: Fork51, estimate the conditional probabi
ity pj u i for the occurrence of the symbolaj right after the
symbolai . For largerk, use the conditional probabilitypj uW

FIG. 1. Symbol sequences produced by a four-symbol meas
ment partition of the time series of Table I:~a! Hénon map,~b!
Ikeda map,~c! Lorenz equations,~d! Mackey-Glass equation,~e!
linearized He´non time series,~f! linearized Lorenz time series. Th
first four sequences are nonlinear, the last two are linear ones
for the occurrence of the symbolaj right after thek letter
word W. This guarantees the same transition probabilit
pi j (t) at least up tot5k for S and the surrogates. To gen
erate surrogates by the Markov modelP, choose a word of
lengthk at random fromS and continue by using thepj u i and
pj uW , respectively, for the following symbols.

Step 2: Symmetrize the Markov modelP. For k51, the
symmetrization ofP is performed by settingpj u i

s 5pi j
s /pi .

For largerk, use

pj uW
s 5 1

2 ~pj uW1pj uWb!, ~5!

whereWb represents the wordW in reverse order. The sym
metrized Markov modelPs has transition probabilities
pi j (t), which are symmetric at least up tot5k. Note that the
symmetrization of the Markov model does not distort t
frequency distribution of the symbols. To generate sur
gates by the Markov modelPs, first choose a word of length
k at random from the sequenceor the reverse sequenceand
continue by using thepj u i

s andpj uW
s , respectively.

We now demonstrate the potentials of the propos
method. We perform the test for symbol sequences by c
sidering six different systems. These are two nonlinear ma
two nonlinear differential equations, and two noisy line
maps, given in Table I. The noisy linear maps are produ
by a global linearization of the He´non and the Lorenz time
series, via an AR~6! model. We use rather short realization
of these systems, containing only 250 data points, and
encode the corresponding dynamics adopting different m
surement partitions. For the special case of a four-sym
measurement partition the corresponding symbol seque
are shown in Fig. 1. Here,F is chosen as an equipartition o
the state space, the alphabetA given by$1,2,3,4%. By using
the Markov modelP, we first generate 100 surrogates to te
up to which time lagt the models are appropriate. We fin
for Markov models of fourth order that for all sequences a
all t<6 the quantityC(t) lies within the frequency distri-
bution of the surrogates~Fig. 2!. TestingH0 by using the
symmetrized Markov modelPs reveals clearly the nonlinea
origin of the first four sequences. These results and also

e-
FIG. 2. The quantityC(t) for the sequences
in Fig. 1~a! to 1~f!, shown as —, and for 100
control ~left! and symmetric~right! surrogates of
sequences~a! to ~f! shown as -, for time lagst
51, . . . ,6.
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results for three-, five-, and six-symbol partitions, are su
marized in Table I. Additionally, for other than equipar
tions, we find a similar high sensitivity of the test, even f
rather nonhomogeneous partitions of the phase space.

Here we performed six different tests for six differe
parameterst, each with a single-test significance of 98%.
is beyond the scope of this paper to investigate how the t
significance level, where all results are summed in one qu
tity, has to be calculated. Since the results are not indep
dent of each other, this would be a formidable task, but
think that often the single-test significances can give us
hints for some underlying structure.

With this method we only test for linearity but not fo
stochasticity, i.e., a symbol sequence resulting from a pa
tion of a linear deterministictime series would not yield
significance in all cases. In contrast, if the AAFT method
applied directly to such a time series, it can yield sign
cance. This has been already pointed out in@15#; the method
of Theiler tests for the negation of ‘‘linearityandstochastic-
ity,’’ which is ‘‘nonlinearity or determinism.’’ If one wants
to exclude such misleading results in testing against linea
one also has to test for determinism. Usual tests for de
minism~e.g.,@16#! are based on smoothness properties of
trajectories in the embedding space. Dealing with sym
ci
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sequences does not allow one to use analogous meth
Note also that sequences built from a two-letter alphabet n
essarily have symmetric transition probabilities and can
be tested by this method. In this case one still could ap
methods based on word distributions@17#, which, however,
regard other hypothesis and usually need a larger amoun
data than discussed here.

To summarize, we have introduced a method for dist
guishing ‘‘linear symbolic noise’’ from nonlinear dynamic
in experimental symbolic data. We consider a symbol
quence as linear symbolic noise, if it could result from
measurement partition of a lineartime series. To test for this,
we introduce a method of surrogate data suited for tes
symbol sequences. The method works well for different m
surement partitions, and the test shows a high sensiti
even for very short sequences. For possible applications
think of the analysis of symbol sequences obtained fr
physiological experiments@18#, especially from experiments
of neurophysiology@19# and cognitive complexity@20#.
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